
HEMP
(Holistic Enterprise Mechanization Process)

An agile approach to
analysis and design

David E. Jones

!

© 2013 David E. Jones

All Rights Reserved

Revision 1.0

http://www.DEJC.com/HEMP

The opinions and views expressed herein belong
solely to the author and do not necessarily represent
the opinions or views of any publisher or distributor of
this book. Permission for the use of sources, graphics,
and photos is solely the responsibility of the author.

For permission to use any part of this work, please
send an email to the author at: dej@dejc.com

ISBN-13: 978-1484184226

ISBN-10: 148418422X

!

http://www.dejc.com/HEMP
http://www.dejc.com/HEMP
mailto:dej@dejc.com?subject=
mailto:dej@dejc.com?subject=

Preface! 1
Audience! 1

About the Author! 1

About the Book! 3

1. The Same Thing Every Night! 6
Requirements versus designs! 6

Why bother with requirements?! 9

Planning for failure and change! 13

Scaling complexity! 14

Agile methodologies! 16

Diagrams! 18

2. The Story of HEMP! 19

3. Gathering Requirements! 25
Business process story! 27

Requirement statement and idea to
incorporate! 30

Actor definition and experience story! 33

Business case! 36

Writing and reviewing: the how! 37

4. Building on Existing Systems! 43
Overlap description! 44

Gap description! 45

!

5. User Interface Design! 47
Screen outline! 48

Wireframe and prototype! 50

Screen flow and menu structure! 51

Graphic design! 52

Design review and testing! 54

6. Technical Design! 57
Data mapping and modeling! 58

Data statement! 60

Data model! 62

Data mapping! 63

Initial and test data! 64

Automated process outline! 65

System interface design! 65

7. Implementation! 67
Software development! 67

Quality assurance! 68

Business implementation! 69

Packaged Software and Marketing! 71

Ongoing Development! 72

8. Tools and Systems! 73

9. Case Studies! 77
Requirement and design distinction! 77

Analysis hysteria! 79

!

Dive into design! 81

HEMP ignited! 84

Important Lessons! 86

Appendix: Examples! 88
Business process story! 88

Actor definition! 90

User experience story! 90

Data statement! 91

Data model! 92

Screen outline! 95

Wireframe! 98

Screen data mapping! 99

!

Useful web resources

Author’s consulting web site:

http://www.DEJC.com

Author’s LinkedIn profile:

http://www.linkedin.com/in/jonesde

Author’s original open source ERP project Apache
OFBiz aka The Open For Business Project:

http://ofbiz.apache.org

Author’s new open source projects Moqui Framework
and Mantle Business Artifacts:

http://www.moqui.org

Author’s GitHub page:

https://github.com/jonesde

The HiveMind PM application mentioned in the book:

https://github.com/jonesde/HiveMind

!

http://www.dejc.com/
http://www.dejc.com/
http://www.linkedin.com/in/jonesde
http://www.linkedin.com/in/jonesde
http://ofbiz.apache.org
http://ofbiz.apache.org
http://www.moqui.org/
http://www.moqui.org/
https://github.com/jonesde
https://github.com/jonesde
https://github.com/jonesde/HiveMind
https://github.com/jonesde/HiveMind

Preface

Audience
HEMP is for people who create software, especially
software used to automate and manage business
operations and general activities that involve multiple
people and systems. This includes those who play the
roles of expert user, business analyst, user interface
designer, system architect, software developer, and
quality assurance technician.

Some principles and practices apply to building
hardware and machines, but are really meant for
effectively handling the complex processes and
activities that are the domain of modern enterprise
software.

About the Author
I started my career doing software development, soon
getting into packaged and custom enterprise software.
I founded The Open For Business Project (now Apache
OFBiz) in 2001. OFBiz is an open source business
automation suite (eCommerce, ERP, CRM, MRP, etc)
designed for easy customization and used primarily
for custom internal use systems and as a foundation
for commercial derivative works.

1

In 2010 I started a series of open source projects that
are the next generation of the ideas and patterns
introduced in OFBiz. These projects include Moqui
Framework and Mantle Business Artifacts which
together are a foundation for a variety of implicitly
integrated open source and commercial enterprise
automation software.

These free software projects are funded mostly
through consulting work to customize and extend
them. Along the way I have consulted on around 120
projects, including involvement with around 20 from
beginning to end and participating in every step along
the way. While I have a technical background, from
the beginning of my career it was painfully
transparent how often technical solutions were
requested and unsuccessfully attempted for solving
business and management problems.

My meanderings in the world of analysis and design
were pushed along by various projects with a total
lack of analysts and designers involved, and by
unclear, incorrect, and frequently changing designs
that never did what the business users needed and
wanted. Sometimes even worse was a myopic vision
of an organization constrained by an existing system,
making a separation of requirements and designs
impossible.

The result of inadequate requirements and designs is
predictable frustration for both business users and
developers, budget and schedule overruns, and even
cancelled or abandoned projects. After participating
in many such projects, when I started to take the helm
I knew something had to be done differently and that

2

solutions from the traditional business analysis and
software design world were complex and feckless.

The principles and practices described in this book
are based on my consulting work, including a number
of projects using HEMP itself. I originally put these
ideas together and started using the term HEMP in
2007 while leading the analysis group in an OFBiz-
focused consulting firm. HEMP has now contributed
to the success of a number of custom software
projects, and helped mitigate issues on others where it
was applied either partially or late in the process.

About the Book
This book presents specific practices and tools for
gathering and organizing requirements, producing
designs based on requirements, developing software
based on designs, and then making sure software
implements the designs and the designs satisfy the
requirements.

This book is a rewrite with improvements to HEMP as
originally presented in the HEMP light, HEMP
Complete, and HEMP Best Practices documents.
While the general ideas are the same,
recommendations about who should do what and
how are slightly different.

Compared to the original documents, this book
focuses more on business process stories and
eliminates the recommendation to produce use case
documents based on process stories (even on very
large projects these have only limited utility). This
book is also development tool and existing system
agnostic so it does not mention OFBiz-specific

3

development artifacts or practices as earlier works
did.

The term “artifact” is used in this book in its broadest
sense as something created by a human as part of
analysis, design, and implementation efforts. An artifact
may be a document, diagram, or machine readable
information such as code and data.

While there are various tools and artifacts presented
in this book, the primary artifact is the business
process story. This artifact documents the actors and
actions of every business activity and structures them
around the progression from one activity to the next.
Business process stories are created primarily by
business analysts working with expert users, and are
ultimately used by everyone involved with creating
and using the software.

HEMP is about high quality results. So many software
projects, especially in enterprise software, devolve
into mediocrity as the people involved struggle to
respond to what seems like constantly changing
suggestions and demands from stakeholders.

With good engagement early in the process and
efficient artifacts to facilitate effective communication
this can be avoided. More than that, the experience
can be satisfying for all involved as the result takes
shape through collaboration in a quality form more
comprehensive than the best and most complete
anyone involved anticipated.

Whatever your role in a project, I recommend reading
through the entire book and then refer to relevant
chapters the first few times you work on each artifact.

4

If you get bogged down along the way read Chapter 9
(Case Studies) for a little motivation and perspective.

The book is designed to be consumable in a couple of
hours and to be easily referenced later on when you
need a reminder of how to do particular things and
what to keep in mind as you do.

5

1. The Same Thing
Every Night

The title of this chapter is from a comedy sketch by
Bill Cosby about recurring patterns in family life
around bedtime with a handful of children. Whether
little or big, people come across familiar situations
and tend to behave in consistent ways when we do.
With good practices beatings can be avoided, at least
if there is no one on the project who is “always
poppings peoples” (this joke has more meaning after
watching this Bill Cosby sketch, available on YouTube
and elsewhere).

When building software systems, especially large and
complex ones, it might seem like an evening of
parents persuading their children to peacefully settle
in for the night. Amidst the chaos some things are the
same every time.

Requirements versus designs
This is the most important principle of HEMP. Making
a clear distinction between business requirements and
system designs will make the biggest difference of
anything you might do to improve success of software
and other development projects.

6

• Business requirements in their most basic form are
business activities that fit into a process.

• A business activity is an actor performing an action.
It is described by specifying who the actor is and
what the actor does to perform an action.

• The position of a business activity within a process
shows when the action is done.

• Designs communicate how a user representing the
actor will perform the action and where in the
system it will be done.

• Neither requirements nor designs should try to
answer the “why” question.

Requirements specify the who, what, and when
whereas designs specify the how and where.

When writing requirements it is common to discuss
business strategy and the costs and benefits of a
variety of approaches to achieve business objectives.
Ultimately these discussions need to end with a
decision on what will be done, and that decision is all
that needs to be documented for building a system.

Others involved may want to document the rationale
behind these decisions, but that should be kept
separate from requirement documentation. Including
the why in requirements makes them very large,
difficult to create and maintain, and is distracting or
even confusing to designers and developers who will
be working from these documents. If you want to
document the why use a separate business case
document to keep your requirements and designs as
simple and clear as possible.

It might seem difficult to distinguish a business
requirement from a system design, especially if you

7

are mostly familiar with system designs labeled as
requirements and have never seen a pure business
requirement that is system agnostic (i.e. does not bias
the design of the system).

Business requirements are about the business, not about
the system. Designs are about the system.

When writing business requirements it is well worth
the effort to use whatever verbal acrobatics might be
required to avoid describing the system to be built.

For example, instead of writing:

“When Customer submits order System sends
Confirmation Email to Customer.”

write:

“When Customer submits order Company
automatically notifies Customer.”

Writing “Company automatically” keeps the focus on
what is done, and leaves the how to the design. Note
that the second sentence also leaves out the detail of
how Company will notify Customer. This avoids
biasing the design, but if all involved are sure that
email will be the only way this is done that detail may
be included without really crossing the line into
design.

Another example of a common business activity that
is tempting to express in system terms is when a user
enters data or views data from the system. We know
this will be done with a computer system, but in
business requirements it is helpful to describe the

8

activity in a way that could lead to a pen and paper
design just as well as a screen in an application.

Instead of writing:

“CSR types in Customer name, phone number, and
address, and then submits the form.”

simply write:

“CSR records Customer name, phone number, and
address.”

The principle to keep in mind is that business
requirements should be limited to the business
domain to make them an effective basis for design.
The requirement information will then be flexible
enough to facilitate creative and efficient design
constrained only by actual needs of the organization.

Why bother with requirements?
The act of gathering and documenting business
requirements in business terms helps engage users
and sponsors of a project, and provides a clear
direction to drive design and implementation efforts.

Engaging users and sponsors throughout the process
improves alignment of the eventual system to the
organization that will use it and sets the stage for
satisfied acceptance, deployment, and long-term use
of the new or improved system.

When working on designs without discussed and
documented requirements different people are often
thinking of different aspects of the business,
sometimes different business activities altogether, and

9

often a different understanding of who should be
doing what and when.

The typical experience of creating designs without
requirements involves a number of people collaborating
on design details with uncommunicated requirements in
their heads.

The resulting designs are often poorly aligned with
what the business needs. Getting to this false
destination still involves long, frustrating discussions
about details that seem irrelevant or nonsensical to
others involved.

For business users driving the system design it is also
easy to think a bad design is a good idea without
considering who will be using it and what they will be
trying to do.

Designing software is difficult and trying to design
“cold” (without requirements) is a setup for failure.

Even end-users who are very familiar with business
activities often fail in cold-design efforts. Without a
discussion of requirements that set the context and
clarify the details needed for design, it is difficult to
remember everything and easy to get hung up on
design elements that won’t be used and may be
expensive to build.

An initial focus on the business and documentation of
business activities helps everyone involved to understand
the business. Action-oriented business process stories
provide a perspective on the business that is usually
missed or glossed over in business plans and operating
policy.

10

Writing process stories often involves uncovering
details and prompting decisions that managers and
executives have not addressed. The simple act of
writing the story can tighten and clarify business
operations, and involves a level of engagement and
mutual understanding between those who run a
business and those building software for it that is
critical to the success and acceptance of the project.

In nonbusiness situations a similar pattern applies.
Even consumer oriented software has sponsors and
experts that drive the design.

Distinction between requirements and designs, and
initial focus on business requirements is about
building the right software and keeping everyone
responsible engaged throughout the process.

What about “analysis paralysis” (endless cycles of
analysis never leading to design or implementation)
and “failure to launch” (project dies during analysis
or design due to lack of confidence)? Effectively
gathering, documenting, and organizing business
requirements is the best way to get early traction in a
project.

Quality requirements are immediately actionable for
design efforts. Quality designs are immediately actionable
for implementation.

If a project stalls during requirements gathering or
design it means the practices for gathering and
artifacts for documenting them are poorly matched to
the task at hand.

11

This is a common problem because so many analysts
are trained on dozens of diagrams and document
structures that require significant effort but have
minimal utility. By using HEMP and a focus on
business process stories you’ll have the opposite
experience: active engagement and actionable results.

What about business users and sponsors who refuse to
engage or aren’t capable of discussing the details
needed to build a system? These are other symptoms
of ineffective requirements gathering and
documenting, or of skipping requirements and diving
straight into designs. Business users and sponsors are
often alienated early on by poor communication and
a focus on details that have nothing to do with their
day-to-day activities. The focus on business process
stories keeps the early discussions in a domain they
are comfortable with, and allows them to provide
actionable details.

The greatest resistance to HEMP usually comes from:

• business analysts trained in other tools and practices
• developers who have had bad experiences with

ineffective and frequently changing designs

Business users and sponsors who have been through
failed projects may have light initial resistance, but
quickly appreciate the early engagement and effective
communication facilitated by business process story
writing.

Starting with requirements consisting of business
activities is a way to begin with the end in mind and
produce a system that will meet the needs of the
organization.

12

Eventually a system needs to be delivered. When it is
delivered it will be subjected to the ultimate test of
alignment with business activities: actual use.

Planning for failure and change
Software design and development are creative human
efforts that stem from human strengths and are
sensitive to human weaknesses. Some weaknesses are
part of natural human tendencies, others are cultural,
and others are learned as a side effect of education
and other life experience. Unavoidable human
weaknesses lead to failures during analysis, design,
and implementation efforts.

The more complex a project the more human
weaknesses make things difficult. It is difficult for
users to express what they need, and even remember
and articulate everything they do. The leap between
what they do (business activities) and what software
might look like to help them do it is difficult, but at
least manageable as long as what they do is
effectively documented.

Because it is easy to forget activities and not realize
nuanced dependencies between activities, let alone
create effective designs for those activities, changes
are guaranteed during analysis, design, and
development processes. Any methodology for these
activities must be sufficiently adaptable to
accommodate and minimize the impact of change.

On top of human weakness, business environments
and goals change over time and it is critical that the
software systems an organization uses be able to

13

support changes within the organization and
externally from partners, suppliers, and customers.

HEMP is a set of practices and artifacts for analysis
and design that help keep changes earlier in the
process where they require less effort to
accommodate. This requires artifacts that are sufficient
for capturing important details but simple enough for
frequent change with minimal effort. The goal is the
minimum effective set of artifacts, similar to the
minimum effective dose principle in medicine.
Beyond the minimum effective point come
diminishing or negative returns.

This is the reason for the focus on simple artifacts like
business process stories for documenting
requirements, and avoiding artifacts like diagrams that
are laborious to change during conversations and
require supplementary documentation to be
interpreted consistently by both business analysts and
expert users who must create them and understand
them to ensure they are correct and consistent.

Scaling complexity
Humans are not good at scaling complexity. We can
only fit so much in our mental models of the world.
As complexity increases the dependencies and
interactions increase non-linearly, but even more
significantly the human effort required to understand
and automate the complexity goes up dramatically.
The curve seems to be an approximation of x2 so
double complexity requires in four times the effort.

Necessary complexity can be managed by:

• refining and organizing requirements

14

• thorough design so implementation scales more
linearly as complexity scales

Constraining complexity is easier to do during
requirement analysis, especially when requirements
are documented and organized according to business
process.

Communication about business needs using
requirements in the form of business activities makes
it easier for expert users and other stakeholders to
identify those that are more frequent and critical, and
warrant more investment in automation.
Communication about business needs using system
designs makes it difficult for stakeholders to look at
them in the context of the organization and evaluate
their importance.

With requirements represented as business activities it
is easy for stakeholders to understand the complexity
they are requesting and give them a chance to
simplify the business process or split activities into
different phases to help prioritize and focus derivative
efforts.

Trimming scope early (during requirements gathering)
avoids unnecessary design and development effort
which are expensive and time-consuming.

To effectively handle complexity in your project:

• write comprehensive and inclusive business process
stories

• review the stories and find ways to simplify and
streamline business activities

• make sure business process stories are easy to
understand and well organized

15

• produce thorough, clear, and well organized system
designs so they can be implemented literally

• review designs to make them as small and simple as
possible while still meeting business requirements

Agile methodologies
Agile methodologies focus on development and rely
on an external source for designs that drive the
software development. A comprehensive agile
approach including management, practices and tools
adapts well to changing requirements and designs.

Agile methodologies prioritize frequent customer
interaction and presenting results early and often. The
biggest disconnect in the process is between
requirements and design with a mix of both being
presented to developers as a basis for their work. The
customer is left on their own to make sure what they
request of development is complete and will
adequately satisfy organizational needs. The result is
more difficulty for both customer and developer as
they iterate toward what is hopefully a good result.

The solution is to help the customer by
communication with expert users in language they are
comfortable with, and that contains the details needed
for design and development. With a focus on
requirements the communication remains clear and to
the point, providing a strong and flexible foundation
for design and implementation.

The business process story and other HEMP artifacts
can be used to drive a project that needs more
predictive elements but the focus, as described in the

16

last section, is on adaptability and works well feeding
designs to a development team using agile methods.

This is especially true for larger projects (such as ERP
projects) where a minimum set of business activities
must be supported before the software is of use to an
organization. The temptation with agile development
methods is to neglect analysis and design, even
analysis as simple as documenting the business
activities that need to be supported. The result is
difficulty predicting the overall size of the project.

HEMP shifts the focus toward analysis and design while
remaining adaptive.

To put HEMP in context it is similar to feature-driven
development (FDD) with a focus on business activities
and uses simplified artifacts to increase agility over
the more complex and development oriented FDD.
HEMP does not rely on object-oriented design and
development and can be applied to a variety of
architectures in existing systems and application
development frameworks.

HEMP makes the most difference in automation of
enterprise operations in any sort of organization
where the business process involves interactions and
hand-offs among a number of actors. Agile methods
are best for projects involving incremental
improvements but for these using HEMP will improve
design and implementation system by basing them on
requirements representing business activities and
needs.

17

Diagrams
Humans have a natural instinct for language and even
the verbally weakest of us can express and understand
a wide variety of subtle ideas using language. Even so,
it can be ambiguous and requires care in writing and
review, with discussion among multiple people to be
sufficiently clear and disambiguate subtle ideas. It also
requires domain knowledge to anticipate common
alternatives that people might consider and explicate
which of them is desired.

Diagrams attempt to present a visual representation of
ideas and disambiguate common ones with a variety
of symbols. These symbol libraries are sometimes
adequate for ideas of software structure and
algorithms, but are rarely adequate for business ideas
and the flow among the wide variety of activities
necessary to operate organizations.

Diagrams are a sort of subset of language designed to
represent specific ideas. They are low-resolution and
without supporting text are often misunderstood.

Diagrams are cumbersome to maintain and keep
consistent with supporting text and related artifacts,
including other diagrams meant to represent different
aspects of an idea or process.

The result is that diagrams are often not maintained
during the high-paced changes that are natural when
gathering requirements. On many projects where
diagrams are used early on they are eventually
abandoned while business process stories and other
HEMP artifacts remain useful from analysis and design
all the way through implementation and quality
assurance.

18

2. The Story of HEMP

The Story of HEMP is a business process story just like
the ones you will use to gather and organize
requirements. It describes activities that make up
HEMP in terms of the actors and actions. This story
will give you an idea of what business process stories
look like and introduce you to the business context
that HEMP is designed for.

The bolded sentences are high-level activities made
up of the more granular ones that follow. In large
business process stories it is useful to create a
summary story with just these high-level activities and
links to the detailed stories that expand on them in
separate documents.

Business Analyst and Expert User gather and
document requirements. Expert User verbally
describes business activities. Business Analyst
documents activities in a business process story,
asking questions as needed to clarify or expand on
what Expert User described.

If Expert User describes a high-level idea and not a
specific business activity then Business Analyst
records it as an “Idea to Incorporate”. If the idea is
one that cannot be incorporated into the story then

19

Business Analyst records it as a requirement
statement.

Once the basic structure of the process story is in
place, Business Analyst and Expert User review the
ideas to incorporate and make changes to the story,
modifying each relevant activity and adding activities
as needed to represent the idea throughout the
business process.

For critical system users Business Analyst optionally
works with Expert User and actual users representing
specific actors to write user experience stories.
Business Analyst reviews user experience stories to
ensure each activity is included in the business
process story.

Expert User or other stakeholders optionally write a
business case document describing general business
objectives and their financial impact. Business Analyst
and Expert User review business process story against
the business case details to ensure business objectives
are achieved by the documented business activities.

Expert User reviews the story and comments on
incorrect or unclear wording, additional relevant
details, and anything else that comes to mind while
reading the document. Business Analyst revises the
business process story until Expert User is satisfied
that everything relevant is represented and Business
Analyst is satisfied that the story is understandable and
actionable.

Business Analyst documents overlaps and gaps with
an existing system. If there is an existing system that
will be modified or extended, Business Analyst

20

reviews each activity in the business process story and
documents it as representing an overlap or gap in the
existing system.

For each overlap Business Analyst documents how
that activity is done in the existing system. For each
gap Business Analyst documents any aspects of the
existing system that are partial overlaps, and adds it to
the list of gaps for design and implementation.

UI Designer designs screens and reports. Considering
activities from the business process story and on gap
descriptions (if available) UI Designer outlines the
contents of screens and reports. UI Designer creates
functional wireframes to accompany the screen and
report outlines. UI Designer optionally creates screen
flow diagram to show transitions between screens in
each application.

Business Analyst reviews outlines and wireframes to
verify the designs against the requirements. Business
Analyst asks questions to UI Designer as needed, and
may do the entire review in conversation with UI
Designer.

UI Designer and Business Analyst review screen
outlines and wireframes with Expert User by role
playing. Expert User follows the business process story
describing what they would do as each of the actors
to perform each action. UI Designer plays the role of
the system and describes how the system would
respond to each user action, including changing from
one wireframe to another as screens change.

UI Designer updates outlines and wireframes based
on comments from Business Analyst and Expert User.

21

If comments from Expert User require business
process changes Business Analyst updates relevant
stories, and UI Designer updates design according to
updated requirements.

System Architect models data and defines system
interfaces. System Architect reviews each activity in
business process stories and write data statements
based on explicit or implied data to be recorded or
reviewed by actors.

System Architect reviews screen and report outlines
and maps each field to a field in the existing data
model. If there is no adequate field in the existing data
model, System Architect records data statements
describing the field and its relationship to other data
concepts.

System Architect reviews user interfaces and based on
anticipated system architecture (especially for client
applications on mobile or desktop devices) designs
services and/or API for processing user input and
preparing more complex data for presentation.

System Architect reviews business process story to
identify all system-system interactions (as opposed to
user-system interactions) and identifies an existing
system interface for each, or defines a system interface
(web service, file drop, API call, etc). System Architect
maps each field in system interfaces to the data
model. For fields without an existing field in the data
model, System Architect records data statements
describing the field and its relationship to other data
concepts.

22

System Architect organizes data statements by data
concept to group them for easier modeling and to
remove redundant statements. System Architect maps
each data statement to the data model and as needed
extends data model based on data statements. System
Architect updates user and system interface data
mappings for relevant fields.

System Architect defines initial and test data to
demonstrate how data is structured and to use for
testing.

Software Developer implements user and system
interface designs. Software Developer reviews
business process story to understand the context of
what needs to be built. Software Developer
implements software described in user interface
designs and technical designs.

System Architect, UI Designer, Business Analyst, and
Expert User review implementation. System Architect
reviews implementation to ensure that data comes
from and goes to the fields described in data mapping.
System Architect reviews service and/or API
implementations and other system interfaces for
consistency with the technical designs.

UI Designer reviews user interfaces and tests
interactions against descriptions in the screen and
report outlines, and layout against the wireframes.

Business Analyst reviews implementation by
performing business activities described in the
business process story. Business Analyst hands off
each activity that is functionally supported to the
Expert User for final review and testing.

23

If QA Technician is involved, QA Technician performs
a comprehensive test of implementation against
individual designs and end-to-end test based on the
requirements in the business process story. QA
Technician identifies and tests possible uses of the
implementation that are not part of the business
process story, and not an explicit part of the user and
system interface designs.

With comprehensive testing done by QA Technician,
other roles can reduce their efforts to spot review and
testing, except for the Expert User who should review
everything from a user perspective for acceptance of
delivery.

This completes the story of HEMP. The activities
described here tell you what to do (the requirements
of HEMP), now we’ll go over how to do them (the
design of HEMP).

24

